
Even-André Karlsson

Software architecture in

ASPICE and 26262

© Addalot Consulting AB - All rights reserved

Agenda

 Overall comparison (3 min)

 Why is the architecture documentation difficult? (2 min)

 ASPICE requirements (8 min)

 26262 requirements (12 min)

 Comparison and questions (5 min)

 Discussion tomorrow in workshop

2

© Addalot Consulting AB - All rights reserved

Relation between ASPICE and 26262

 ASPICE is a maturity capability standard with a large coverage

- No generic practices in 26262, but some level 2 & 3 requirements on tailoring and

selection

 26262 is a safety standard with increasing requirements depending on ASIL

level

 26262: Little focus on organizational processes, metrics or improvements –

one project and product at the time – but having an ASPICE maturity helps

 26262: Much more focus on technical practices to ensure safety – ASPICE

only talks about generic requirements

 Requirements on traceability are stronger in ASPICE than in 26262

 ASPICE is a small standard (SW arch: less than 2 + 0,5 = 2,5 pages),

26262 is large (SW arch: 6 + 2 (App D) + 10 (part 9) = 18 pages)

 Much overlap, e.g. architecture

3

© Addalot Consulting AB - All rights reserved

Why is documenting the SW arch difficult?

 SW developers are not used to documenting the architecture

 How to combine with agile development?

 How to incorporate all Safety documentation?

 Maintaining the documentation

 Distinguish between System and Software level

 Level of detail

Further to be discussed in workshop tomorrow!

This only covers SW architecture – SYSTEM is actually more interesting

4

© Addalot Consulting AB - All rights reserved

Automotive SPICE (Version 3.0)

5

HIS Scope

Extended

HIS Scope

Previously

Eng 1-10
Changes in

Test structure

© Addalot Consulting AB - All rights reserved

Related ASPICE processes

 System and Software Requirements

 System architecture

 Test strategy (from all test processes)

 Verification = Review

 Traceability

6

© Addalot Consulting AB - All rights reserved

SW architecture work product

7

Note

duplication

Same in 2.5

and 3.0

© Addalot Consulting AB - All rights reserved

Automotive SPICE Reference Model 3.0

8

SWE.2 – Software Architectural Design

© Addalot Consulting AB - All rights reserved

SWE.2 – Software Architectural Design

Process Purpose: The purpose of the Software Architectural Design Process is to establish
an architectural design and to identify which software requirements are to be allocated to
which elements of the software, and to evaluate the software architectural design against
defined criteria.

Typical Challenges:

1. What level of details is needed

2. Find a healthy level of modules - identifying all necessary modules and interfaces

3. Creating an architecture that is flexible and adoptable to change

4. Finding balance between flexibility and performance – lots of layers and indirection will
makes things slower (important for embedded systems)

5. Evaluation criteria and recording design decisions

6. Traceability

7. Keeping the architecture documentation up-to-date

9

© Addalot Consulting AB - All rights reserved

SWE.2 – Software Architectural Design

Base Practices:

 SWE.2.BP1: Develop software architectural design. Develop and document the software architectural design that

specifies the elements of the software with respect to functional and non-functional software requirements.

 SWE.2.BP2: Allocate software requirements. Allocate the software requirements to the elements of the software

architectural design.

 SWE.2.BP3: Define interfaces of software elements. Identify, develop and document the interfaces of each

software element.

 SWE.2.BP4: Describe dynamic behavior. Evaluate and document the timing and dynamic interaction of software

elements to meet the required dynamic behavior of the system.

 SWE.2.BP5: Define resource consumption objectives. Determine and document the resource consumption

objectives for all relevant elements of the software architectural design on the appropriate hierarchical level.

 SWE.2.BP6: Evaluate alternative software architectures. Define evaluation criteria for architecture design.

Evaluate alternative software architectures according to the defined criteria. Record the rationale for the chosen

software architecture.

 SWE.2.BP7: Establish bidirectional traceability. Establish bidirectional traceability between software requirements

and elements of the software architectural design.

 SWE.2.BP8: Ensure consistency. Ensure consistency between software requirements and the software architectural

design.

 SWE.2.BP9: Communicate agreed software architectural design. Communicate the agreed software architectural

design and updates to software architectural design to all relevant parties.

10

© Addalot Consulting AB - All rights reserved

04-04 Software architectural design

 overall software structure

 operative system including task

structure

 Identifies inter-task/inter-process

communication

 the required software elements

 own developed and supplied code

 the relationship and dependency

between software elements

 where the data (such as parameters) are

stored and which measures (e.g.

checksums, redundancy) are taken to

prevent data corruption

 variants for different model series or

configurations are derived

 dynamic behavior of the software (Start-

up, shutdown, software update, error

handling and recovery, etc.)

 which data is persistent and under

which conditions

 Consideration is given to:

- any required software performance

characteristics

- any required software interfaces

- any required security characteristics

required

- any database design requirements

11

© Addalot Consulting AB - All rights reserved

Traceability requirements

12

© Addalot Consulting AB - All rights reserved

The whole 26262 – SW impacts

13

© Addalot Consulting AB - All rights reserved

Software level

14

© Addalot Consulting AB - All rights reserved

7: Software architectural design

Objectives

1. Develop a software architectural design

that realizes the software safety requirements

2. Verify the software architectural design

General

The software architectural design represents all software components and their

interactions in a hierarchical structure. Static aspects, such as interfaces and data

paths between all software components, as well as dynamic aspects, such as process

sequences and timing behaviour are described.

- NOTE The software architectural design is not necessarily limited to one microcontroller or ECU,

and is related to the technical safety concept and system design. The software architecture for

each microcontroller is also addressed by this chapter.

 In order to develop a software architectural design both software safety requirements

as well as all non-safety-related requirements are implemented.

 The software architectural design provides the means to implement the software

safety requirements and to manage the complexity of the software development.

15

Architecture

Component

Unit

1:n

1:n

© Addalot Consulting AB - All rights reserved

7: Prerequisites

 safety plan (refined) in accordance with 5.5.1;

 design and coding guidelines for modelling and programming languages in

accordance with 5.5.3;

 hardware-software interface specification in accordance with ISO 26262-4:2011,

7.5.3;

 software safety requirements specification in accordance with 6.5.1;

 software verification plan (refined) in accordance with 6.5.3; and

 software verification report in accordance with 6.5.4.

Support information

 technical safety concept (see ISO 26262-4:2011, 7.5.1);

 system design specification (see ISO 26262-4:2011, 7.5.2);

 qualified software components available (see ISO 26262-8:2011, Clause 12);

 tool application guidelines in accordance with 5.5.4; and

 guidelines for the application of methods (from external source).

16

© Addalot Consulting AB - All rights reserved

Requirements and recommendations

7.4.1 Use of appropriate notation

7.4.2 Design considerations

7.4.3 Design principles

7.4.4 Identification of software units

7.4.5 Design aspects

7.4.6 Component categorization

7.4.7 New/modified components

7.4.8 Re-used components

7.4.9 Allocation of Safety requirements

7.4.10 ASIL of combined components

7.4.11 Software partitioning

(Annex D)

7.4.12 Dependent failure analysis

(Part 9: 7 Dependent failure analysis)

7.4.13 Safety analysis

(Part 9: 8 Safety analysis)

7.4.14 Error detection

7.4.15 Error handling

7.4.16 New hazards

7.4.17 Resource usage

7.4.18 Architectural design verification

17

© Addalot Consulting AB - All rights reserved

7.4.1 Notations for software architectural design

Informal: Power-point drawings

Semi-formal: UML, SDL or UML-RT, An overview of architecture design notations

7.4.2 Design considerations: During the development of the software architectural

design the following shall be considered:

a. the verifiability of the software architectural design;

NOTE This implies bi-directional traceability between the software architectural design and the software

safety requirements. (only safety requirements)

b. the suitability for configurable software;

c. the feasibility for the design and implementation of the software units;

d. the testability of the software architecture during software integration testing; and

e. the maintainability of the software architectural design.

18

Methods (Notations) A B C D

1a Informal ++ ++ + +

1b Semi-formal (also executable models) + ++ ++ ++

1c Formal + + + +

7.4.1 Notation and 7.4.2 Considerations

http://www.site.uottawa.ca/~tcl/gradtheses/jlevin/ModelingInSWArchitecture-UOttawa-SITE-TR-2009-02.pdf

© Addalot Consulting AB - All rights reserved

7.4.3 Design principles

7.4.3 Principles of software architecture design In order to avoid failures resulting

from high complexity, the software architectural design shall exhibit the following

properties by use of the principles listed in Table below:

a. modularity;

b. encapsulation, and

c. simplicity.

19

Methods A B C D

1a Hierarchical structure of software components ++ ++ ++ ++

1b Restricted size of software components ++ ++ ++ ++

1c Restricted size of interfaces + + + +

1d High cohesion within each software component + ++ ++ ++

1e Restricted coupling between software components + ++ ++ ++

1f Appropriate scheduling properties ++ ++ ++ ++

1g Restricted use of interrupts (must have priority) + + + ++

© Addalot Consulting AB - All rights reserved

7.4.4 Level and 7.4.5 Description

7.4.4 The software architectural design shall be developed down to the level where all

software units are identified.

7.4.5 The software architectural design shall describe:

a. the static design aspects of the software components; i.e.

- the software structure including its hierarchical levels;

- the logical sequence of data processing;

- the data types and their characteristics;

- the external interfaces of the software components;

- the external interfaces of the software; and

- the constraints including the scope of the architecture and external dependencies.

b. the dynamic design aspects of the software components, i.e.

- the functionality and behaviour; (Note 2: including operating states e.g. power-up, shut-down,

normal operation, calibration and diagnosis)

- the control flow and concurrency of processes; (Note 3: including allocation to HW)

- the data flow between the software components;

- the data flow at external interfaces; and

- the temporal constraints.

20

© Addalot Consulting AB - All rights reserved

7.4.6-7.4.8 Reuse categorization

7.4.6 Every safety-related software component shall be categorized as one of the

following:

a. newly developed;

b. reused with modifications; or

c. reused without modifications.

7.4.7 Safety-related software components that are newly developed or reused with

modifications shall be developed in accordance with ISO 26262.

7.4.8 Safety-related software components that are reused without modifications shall be

qualified in accordance with ISO 26262-8:2011, Clause 12.

21

© Addalot Consulting AB - All rights reserved

7.4.9 Req allocation and ASIL

7.4.9 The software safety requirements shall be allocated to the software components.

As a result, each software component shall be developed in compliance with the

highest ASIL of any of the requirements allocated to it.

- NOTE Following this allocation, further refinement of the software safety requirements can be

necessary.

22

Software components = one or more Software Units, thus we need to allocate

safety reqs close to software units

© Addalot Consulting AB - All rights reserved

7.4.10 Highest ASIL or no interference

7.4.10 If the embedded software has to implement software components of different

ASILs, or safety-related and non-safety-related software components, then all of the

embedded software shall be treated in accordance with the highest ASIL, unless the

software components meet the criteria for coexistence in accordance with ISO 26262-

9:2011, Clause 6.

Freedom of interference general in ISO 26262-9:2011, Clause 6.

 This means that cascading failures from this sub-element to the safety-related

elements are absent.

 This can be achieved by design precautions such as those concerning the data flow

and control flow for software, or the I/O signals and control lines for hardware.

Software specific in Annex D (See separate slides)

23

© Addalot Consulting AB - All rights reserved

7.4.11 Software Partitioning

7.4.11 If software partitioning (see Annex D) is used to implement freedom from

interference between software components it shall be ensured that:

a) the shared resources are used in such a way that freedom from interference of

software partitions is ensured;

- NOTE 1 Tasks within a software partition are not free from interference among each other.

- NOTE 2 One software partition cannot change the code or data of another software partition nor command

non-shared resources of other software partitions.

- NOTE 3 The service received from shared resources by one software partition cannot be affected by another

software partition. This includes the performance of the resources concerned, as well as the rate, latency,

jitter and duration of scheduled access to the resource.

b) the software partitioning is supported by dedicated hardware features or

equivalent means (this requirement applies to ASIL D, in accordance with 4.3);

c) the part of the software that implements the software partitioning is developed in

compliance with the same or an ASIL higher than the highest ASIL assigned to the

requirements of the software partitions; and

- NOTE In general the operating system provides or supports software partitioning.

d) the verification of the software partitioning during software integration and testing

(in accordance with Clause 10) is performed.

24

© Addalot Consulting AB - All rights reserved

7.4.12 Dependent failures

7.4.12 An analysis of dependent failures in accordance with ISO 26262-9:2011, Clause

7, shall be carried out if the implementation of software safety requirements relies on

freedom from interference or sufficient independence between software components.

Part 9: Clause 7: Analysis of dependent failures

Objective: The analysis of dependent failures aims to identify the single events or single

causes that could bypass or invalidate a required independence or freedom from

interference between given elements and violate a safety requirement or a safety goal.

Architectural features to consider:

- similar and dissimilar redundant elements;

- different functions implemented with identical software or hardware elements;

- functions and their respective safety mechanisms;

- partitions of functions or software elements;

- physical distance between hardware elements, with or without barrier;

- common external resources.

 Independence is threatened by common cause failures and cascading failures,

while freedom from interference is only threatened by cascading failures.

(Detour)

25

© Addalot Consulting AB - All rights reserved

7.4.13 Safety analysis

7.4.13 Safety analysis shall be carried out at the software architectural level in

accordance with ISO 26262-9:2011, Clause 8, in order to: (next)

 identify or confirm the safety-related parts of the software; and

 support the specification and verify the efficiency of the safety mechanisms.

NOTE Safety mechanisms can be specified to cover both issues associated with random

hardware failures as well as software faults.

26

© Addalot Consulting AB - All rights reserved

7.4.14 Error detection

7.4.14 To specify the necessary software safety mechanisms at the software

architectural level, based on the results of the safety analysis in accordance with 7.4.13,

mechanisms for error detection as listed in Table 4 shall be applied.

- NOTE When not directly required by technical safety requirements allocated to software, the use

of software safety mechanisms is reviewed at the system level to analyse the potential impact on

the system behaviour.

27

Mechanisms for error detection A B C D

1a Range checks of input and output data ++ ++ ++ ++

1b Plausibility check (reference model, comparing

sources)

+ + + ++

1c Detection of data errors (EDC, multiple storage) + + + +

1d External monitoring facility (watchdog) o + + ++

1e Control flow monitoring o + ++ ++

1f Diverse software design o o + ++

© Addalot Consulting AB - All rights reserved

7.4.15 Error handling

7.4.15 This subclause applies to ASIL (A), (B), C and D, in accordance with 4.3 ((X) =

recommendation): to specify the necessary software safety mechanisms at the software

architectural level, based on the results of the safety analysis in accordance with 7.4.13,

mechanisms for error handling as listed in Table 5 shall be applied.

- NOTE 1 When not directly required by technical safety requirements allocated to software, the

use of software safety mechanisms is reviewed at the system level to analyse the potential

impact on the system behaviour.

- NOTE 2 The analysis at software architectural level of possible hazards due to hardware is described in ISO

26262-5.

28

Mechanisms for error handling A B C D

1a Static recovery mechanism (forward and backward,

blocks, repetition = reset HW and re-execute SW)

+ + + +

1b Graceful degradation (prioritizing functions) + + ++ ++

1c Independent parallel redundancy o o + ++

1d Correcting codes for data + + + +

http://mavendeveloper.com/2011/01/3005478/
http://www.cs.ncl.ac.uk/publications/books/papers/101.pdf
https://upcommons.upc.edu/bitstream/handle/2117/87259/Timely Error Detection for Effective Recovery.pdf

© Addalot Consulting AB - All rights reserved

7.4.16 New hazards

7.4.16 If new hazards introduced by the software architectural design are not already

covered by an existing safety goal, they shall be introduced and evaluated in the hazard

analysis and risk assessment in accordance with the change management process in

ISO 26262-8:2011, Clause 8.

- NOTE Newly identified hazards, not already reflected in a safety goal, are usually non-functional

hazards. If those non-functional hazards are outside the scope of this standard then it is

recommended that they be annotated in the hazard analysis and risk assessment with the

following statement “No ASIL is assigned to this hazard as it is not within the scope of ISO

26262.” However, an ASIL is allowed for reference purposes.

29

© Addalot Consulting AB - All rights reserved

7.4.17 Resource usage

7.4.17 An upper estimation of required resources for the embedded software shall be

made, including:

a) the execution time;

b) the storage space; and

EXAMPLE RAM for stacks and heaps, ROM for program and non-volatile data.

c) the communication resources.

30

© Addalot Consulting AB - All rights reserved

7.4.18 Verification

7.4.18 The software architectural design shall be verified in accordance with ISO

26262-8:2011, Clause 9, and by using the software architectural design verification

methods listed in Table 6 to demonstrate the following properties:

 compliance with the software safety requirements;

 compatibility with the target hardware; and

- NOTE This includes the resources as specified in 7.4.17.

 adherence to design guidelines.

31

Methods for SW architecture design verification A B C D

1a Walk-through of the design ++ + o o

1b Inspection of the design + ++ ++ ++

1c Simulation of dynamic parts of the design + + + ++

1d Prototype generation o o + ++

1e Formal verification o o + +

1f Control flow analysis + + ++ ++

1g Data flow analysis + + ++ ++

© Addalot Consulting AB - All rights reserved

7: Work products

 7.5.1 Software architectural design specification

resulting from requirements 7.4.1 to 7.4.6, 7.4.9,

7.4.10, 7.4.14, 7.4.15 and 7.4.17.

 7.5.2 Safety plan (refined) resulting from

requirement 7.4.7.

 7.5.3 Software safety requirements specification

(refined) resulting from requirement 7.4.9.

 7.5.4 Safety analysis report resulting from

requirement 7.4.13.

 7.5.5 Dependent failures analysis report

resulting from requirement 7.4.12.

 7.5.6 Software verification report (refined)

resulting from requirement 7.4.18.

32

ASPICE Output work products

04-04 Software architectural design

04-04 Software architectural design

04-04 Software architectural design
17-08 Interface requirement specification

04-04 Software architectural design

04-04 Software architectural design
13-19 Review record
13-22 Traceability record

13-04 Communication record

© Addalot Consulting AB - All rights reserved

Comparison

ASPICE 26262

SWE.2.BP1: Develop software architectural design 7.4.1 Notations for software architectural design

7.4.3 Principles of software architecture design

7.4.4 Required level

7.4.5 Description (a: static)

- (own and supplied code – Arch doc) 7.4.6-7.4.8 ASIL categorize of components (re-used)

- (data consistency mechanisms – Arch doc) 7.4.14 and 7.4.15 Software safety mechanisms

- 7.4.16 Analyze new hazards

SWE.2.BP2: Allocate software requirements 7.4.9 Allocate software safety requirements

- 7.4.10 ASIL analysis of components

- (dependency analysis – Arch doc) 7.4.11 Software partitioning

7.4.12 Dependent failure analysis

SWE.2.BP3: Define interfaces of software elements 7.4.5 Description (a: Interfaces)

SWE.2.BP4: Describe dynamic behavior 7.4.5 Description (b: dynamic)

SWE.2.BP5: Define resource consumption objectives 7.4.17 Resource limits

SWE.2.BP6: Evaluate alternative software architectures - (7.4.2 Design considerations)

SWE.2.BP7: Establish bidirectional traceability 7.4.2 Design considerations (a)

7.4.9 Allocate software safety requirements

SWE.2.BP8: Ensure consistency 7.4.18 Verify compliance, 7.4.2 Design considerations

- 7.4.13 Safety analysis

SWE.2.BP9: Communicate agreed software architectural design -

33

Even-Andre.Karlsson@addalot.se

+46 706 800 533

“Excellent firms don't believe in excellence -

only in constant improvement and change.”

In Search of Excellence - Tom Peters

