Software architecture in

ASPICE and 26262

Even-Andreé Karlsson

- addalot

Agenda

= Overall comparison (3 min)

= Why is the architecture documentation difficult? (2 min)
= ASPICE requirements (8 min)

= 26262 requirements (12 min)

= Comparison and questions (5 min)

= Discussion tomorrow in workshop

S

(L

QUALITY IMPROVEMENT

© Addalot Consulting AB - All rights reserved 2

Relation between ASPICE and 26262

= ASPICE is a maturity capability standard with a large coverage

- No generic practices in 26262, but some level 2 & 3 requirements on tailoring and
selection

= 26262 is a safety standard with increasing requirements depending on ASIL
level

= 26262: Little focus on organizational processes, metrics or improvements -
one project and product at the time - but having an ASPICE maturity helps

= 26262: Much more focus on technical practices to ensure safety - ASPICE
only talks about generic requirements

= Requirements on traceability are stronger in ASPICE than in 26262

= ASPICE is a small standard (SW arch: less than 2 + 0,5 = 2,5 pages),
26262 is large (SW arch: 6 + 2 (App D) + 10 (part 9) = 18 pages)

= Much overlap, e.g. architecture

addaloi

© Addalot Consulting AB - All rights reserved 3 QUALITY IMPROVEMENT

Why is documenting the SW arch difficult?

= SW developers are not used to documenting the architecture

How to combine with agile development?

How to incorporate all Safety documentation?

Maintaining the documentation

Distinguish between System and Software level

Level of detail

Further to be discussed in workshop tomorrow!

This only covers SW architecture - SYSTEM is actually more interesting

addaloi

QUALITY IMPROVEMENT

© Addalot Consulting AB - All rights reserved 4

HIS Scope

Automotive SPICE (Version 3.0) e

HIS Scope
Acquisition Process System Engineering Process Group (SYS) Management Process
Group (ACQ) Group (MAN)
ACQ.3 SYS.1 MAN.3
Contract Agreement Requirements Elicitation Project Management
e — — - N - N
ACQ.4 . SYS.5 MAN.5
Supplier Monitoring System Qualification Test Risk Management
ACQ.11 ¥S. A MAN.6
Technical Requirements System;ersc':::ectural Sw‘ir:\e;r::g‘or: '.r'z's'ta"d Measurement
ACQ.12 —
Legal and Administrative .
Bschiressis Software Engineering Process Group (SWE) P revious |y
ACQ.13 WE. SWE.6 -
Project Requirements Sohwar::equlrements Software Qualification Test E n g 1 1 o
alysis P

ACQ.14

——— . Changes in
Request for Proposals s T I Test structure

ACQ.15 7 SWE.4 Reuse Process Group
Supplier Qu.aliﬁcatlon S‘;f;:ﬂ:i?g;ﬂmm" Software Unit (leriﬁca!lon (REU)
Reuse Pr;gram
Supply Process Group Supporting Process Group (SUP) Management
SPL.

(SPL)

SPL.1 SUP.1 SUP.2 SuP.4 SUP.7 Process Improvement
Supplier Tendering Quality Assurance Verification Joint Review Documentation Process Group (PIM)
=’

Product Release ﬁ::&g:e':e‘?‘? Pm&'::; ::;?el::]m c:::g:;:?:::‘ Process Improvement

Organizational Life Cycle Processes I Supporting Life Cycle Processes

Primary Life Cycle Processes |

addaloi

© Addalot Consulting AB - All rights reserved 5 QUALITY IMPROVEMENT

Related ASPICE processes

= System and Software Requirements

= System architecture

= Test strategy (from all test processes)

= Verification = Review

= Traceability

© Addalot Consulting AB - All rights reserved

Acquisition Process System Engineering Process Group (SYS) Management Process
Group (ACQ) Group (MAN)
ACQ3 SYs.1 MAN.3
Contract Agreement Requirements Elicitation Project Management
ACQ.4 SYs.2 SYS.5 MAN.5
Supplier Monitoring System A»m:g;mems System Qualification Test Risk Management
SYs.3 SYS.4
System Architectural System Integration and 4
Technical Requirements. ‘Design isteguation Tost Measurement
ACQ.12
Legal and Administrative
R goiurant Software Engineering Process Group (SWE)
13 SWE.1
Prolnt et Software Requirements
SWE.2 SWE.5
ACQ.14
Software Architectural Software Integration and
Request for Proposals Design Integration Test
Reuse Process Grou|
ACQS s Dorihon Cesen . (REV) g
Supplier Qualification e U Corist v, Software Unit Verification
Supply Process Group Supporting Process Group (SUP)
(sPL)
SPL.1 SUP.1 SupP.2 SurP.4 sup.7 Process Improvement
Supplier Tendering Quality Assurance Verification Joint Review Documentation Process Group (PIM)
SuUP.8 SUP.9 SUP.10
Prodii Ratasse Configuration Problem Resolution Change Request
| Primary Life Cycle Processes | Life Cycle Processes [Life Cycle Processes
I bidirectional traceability
requirements I consistency
$Y5.2 BP6
$Y8.2 BPT SYS.5 B8PS System qualification
SYS.5BP6 test specification
System Pae— svs5B8P5 [system qualification
L_,/J_ test results.
SYS.4 BP7 System integration
SYS.4BP8 test specification
Ee— SYS.4BPY System integration
L_,,—uh_ test results
SWE 6 BP5
SWE.1BP6 SWEE BPS Software qualification
SWE.1BPT st
—] SWE.6 BP5 [Software qualification
F test results
SWE5BPT
oftware aremn SWE.5 BPS Software integration
— SWE.5 BPT P 9
Lﬁ““/‘mﬂ_ Software integration
SWE.3.8P5 test results
SWE.3 BP6
SWE.3BP5 WE 4 BP5
SWE.3BP6

SWE.3 BPS
SWE.3 BP6

s
Software detailed | SWE.4 BPG ; —— SWE .4 BPS ;
N Unit Unit
design N

Software units

To affected work products
SUP.10 BP8

SWE.4 BP5

results =

Figure D.4 — Bidirectional Traceability and Consistency

_ - - — = — s

QUALITY IMPROVEMENT

SW archltecture work product

04-03 |Domain model Must provide a clear explanation and description, on usage and
properties, for reuse purposes
Identification of the management and structures used in the model

Describes the overall software structure

Describes the operative system including task structure

Identifies inter-task/inter-process communication

Identifies the required software elements

Identifies own developed and supplied code

Identifies the relationship and dependency between software elements
Identifies where the data (such as parameters) are stored and which
measures (e.g. checksums, redundancy) are taken to prevent data

04-04 |Software
architectural design

‘.......

corruption
Note ¢ Describes how variants for different model senes or configurations are

dup|ICat|0n © ¢ Describes the dynamic behavior of the software (Start-up, shutdown,

Samein 2.5 software update, error handling and recovery, etc.)
d 3 O ¢ |dentifies where the data (such as parameters) are stored and which
an . T> measures (e.g. checksums, redundancy) are taken to prevent data
corruption
e Describes which data is persistent and under which conditions
e Consideration is given to:
- any required software performance characteristics
- any required software interfaces
- any required security charactenstics required
- any database design requirements

04-05 |Software detailed e Provides detailed design (could be represented as a prototype, flow
design chart, entity relationship diagram, pseudo code, etc.)
. Pnov:des format of mput/output data /

‘addalot

© Addalot Consulting AB - Al rights reserved 7 QUALITY IMPROVEMENT

Automotive SPICE Reference Model 3.0

SWE.2 — Software Architectural Design

Acquisition Process System Engineering Process Group (SYS) Management Process
Group (ACQ) Group (MAN)
AcCQ.3 SYs.1 MAN.3
Contract Agreement Requirements Elicitation Project Management
ACQ.4 SYs.2 SYS.5 MAN.5
Supplier Monitoring SystemAl:‘eaqusi‘rsemen(s System Qualification Test Risk Management
ACQ.11 SYs.3 SYs.4 MAN.G

Technical Requirements SystemDAersc‘:::ectural S”‘i?%?;:g: t.r‘:';tand Measurement
ACQ.12
Legal and Administrative
B iramains Software Engineering Process Group (SWE)
ACQ.13 SWE.1 SWE.6
Project Requirements Sohwar uirements Software Qualification Test
SWE.2 ‘ SWE.5
ACQ.14 - x
Software Architectural Software Integration and
Raquest ox froposs [Integration Test
ACQ.15 SWE.3 SWE.4 Reuse Process Group
s 8 Software Detailed Design 7 (REU)
pplier Qualification and Unit Construction Software Unit Verification
REU.2
Reuse Program
Supply Process Group Supporting Process Group (SUP) NS
(SPL)
SPL.1 SUP.1 SUP.2 SUP.4 SUP.7 Process Improvement
Supplier Tendering Quality Assurance Verification Joint Review Documentation Process Group (PIM)
sPL2 SUP.8 SUP.9 SUP.10 PIM3
Product Release ﬁ?ﬂ?&;‘m Pro&l::;::g::lon C'Sfﬁf&ﬁ:ﬁf : Process Improvement
[Primary Life Cycle Processes Organizational Life Cycle Processes Supporting Life Cycle Processes I

© Addalot Consulting AB - All rights reserved

/

addaloi

QUALITY

IMPROVEMENT

SWE.2 - Software Architectural Design

Process Purpose: The purpose of the Software Architectural Design Process is to establish
an architectural design and to identify which software requirements are to be allocated to
which elements of the software, and to evaluate the software architectural design against
defined criteria.

Typical Challenges:
1. What level of details is needed
2. Find a healthy level of modules - identifying all necessary modules and interfaces
3. Creating an architecture that is flexible and adoptable to change

4. Finding balance between flexibility and performance — lots of layers and indirection will
makes things slower (important for embedded systems)

5. Evaluation criteria and recording design decisions

6. Traceability

7. Keeping the architecture documentation up-to-date

addaloi

© Addalot Consulting AB - All rights reserved 9 QUALITY IMPROVEMENT

SWE.2 - Software Architectural Design

Base Practices:

= SWE.2.BP1: Develop software architectural design. Develop and document the software architectural design that
specifies the elements of the software with respect to functional and non-functional software requirements.

= SWE.2.BP2: Allocate software requirements. Allocate the software requirements to the elements of the software
architectural design.

= SWE.2.BP3: Define interfaces of software elements. Identify, develop and document the interfaces of each
software element.

= SWE.2.BP4: Describe dynamic behavior. Evaluate and document the timing and dynamic interaction of software
elements to meet the required dynamic behavior of the system.

= SWE.2.BP5: Define resource consumption objectives. Determine and document the resource consumption
objectives for all relevant elements of the software architectural design on the appropriate hierarchical level.

= SWE.2.BP6: Evaluate alternative software architectures. Define evaluation criteria for architecture design.
Evaluate alternative software architectures according to the defined criteria. Record the rationale for the chosen
software architecture.

= SWE.2.BP7: Establish bidirectional traceability. Establish bidirectional traceability between software requirements
and elements of the software architectural design.

= SWE.2.BP8: Ensure consistency. Ensure consistency between software requirements and the software architectural
design.

= SWE.2.BP9: Communicate agreed software architectural design. Communicate the agreed softwa

design and updates to software architectural design to all relevant parties.
addaloi

© Addalot Consulting AB - All rights reserved 10 QUALITY IMPROVEMENT

04-04 Software architectural design

= overall software structure = variants for different model series or

. . . configurations are derived
= operative system including task

structure = dynamic behavior of the software (Start-
up, shutdown, software update, error

= |dentifies inter-task/inter-process handling and recovery, etc.)

communication
= which data is persistent and under

= the required software elements which conditions

= own developed and supplied code = Consideration is given to:

= the relationship and dependency - any required software performance

between software elements characteristics

- any required software interfaces
* where the data (such as parameters) are - any required security characteristics

stored and which measures (e.g. required
checksums, redundancy) are taken to - any database design requirements
prevent data corruption

addaloi

© Addalot Consulting AB - All rights reserved 11 QUALITY IMPROVEMENT

Traceability requirements

Stakeholder
requirements

System requirements |

Il bidirectional traceability

SWE.1 BP6
SWE.1BP7

SWE.3 BP5
SWE.3 BP6

Software units

I consistency
SYS.2 BP6
$YS.2BP7 SYS.5 BPS System qualification
SYS.5 BP6 test specification
- Test cases SYS.5BP5 | System qualification
A - test results
SYS.3 BP6
SYS.2 BPY
h 4 SYS.4 BP7 System integration
SYS.4 BP8 i
System architecture . test specification
* » || SYS.4BPT System integration
F 3 P -
SWE.1 BP6 test results
§ SWE-1BPT SWE.6 BP5 .
SWE.G BP6 Software ql.,alrﬁc.ation
Software requirements |« > test specification
7'y || SWE.6 BP5 | Software qualification
SWE.2 BP7 F - test results
SWE-2BP8 SWE.5.BP7
Software integration
Software architecture | SWESBRS = test specification
Y || SWE.5 BPT »| Software integration
SWE.3.BP5 test results
SWE.3 BP6
SWE.3 BPS A 4 SWE.4 BP5
SWE.3 BP6 il .
Soﬁw:;ii::lalled + SWESBPS P Unit test specification [« SWEZSBPS = Unit test results

Static verification

Change requests

To affected work products

h SUP.10 BP8 'ﬁ

SWE.4 BP5

vy

results

Figure D.4 — Bidirectional Traceability and Consistency

© Addalot Consulting AB - All rights reserved

/

addaloi

QUALITY IMPROVEMENT

The whole 26262 - SW impacts

=

© Addalot Cons

I 1. Voecabulary I

2. Management of functional safety

2-6 Safety management during the concept phase
H|and the product devesopment

4. Product development at the system level

2-5 Owerall aafety man agement

3. Concept phase

gtion of produ o

3-5 liem definition ant at the aystem leve

3-8 Initiation of the safety liecyde eon of the techmnica

gents

a
47 A |

3-T Hazard analysis and risk
A saesament

3-8 Functional safety

| 2-T Safety management afier the em's release
for production

Production and operation

|4-11 Rl eane for productic Producion

4-10 Functional salety

4 -8 Safety validato

b Operaton, servics
(maintenance and repsir), 2nd
decomimias oning

cantep . Frodud pnt at the
ha

4 it iation o
dewvel opment =

B S pec fication
Sa7ehy veir e

5-T Handware desig

el

5

mof the
metrics

5-8 Evalu
arch

[ir= Fi

4 Eva sabono 438 3
ictation s due to, random hang
ol res
=10 Har dware e
tesfing

BT O B0

8-5 Interface s within distr ibuted develo pments

pECMCANoN 2N Mana3ement of Salely ISguiremea ns

B8-11 Confidance in the use of scftware fools

I&-il‘ Queal ification of sofware components

B-8 Chan

Mana pement

2 il Catkon

9. ASIL-oriented and
S0 UINSMents SeCOmpoailon with respect 1o ASIL Talonng

safety-oriented analyses

I9-7 Analysis of dependantfaiures

9-6 Criteria for coexdstence of elements

10. Guideline ci8IS0O 26262

-
=] [o]4

ROVEMENT

Software level

\ fern testing / i 3
4-7 System design 48 Ilamlmla_grallurr and
Test phase asting
B 1Y verification
1Y
LY
‘%" Desiyn phase
verihc ation
—— A __ A . N /S
‘\.
B-b Specification of Software testing B-11 YWernfication of
software safety software safety
requirements Test phase requirements
venfication
%
%
Design phase
vernfication
6-7 Software Software testing 6-10 Software

architectural design

b

Test phase
verification

at the software level

%
Dezign phase
vEn ‘aﬁnn

]
L]

B-5 Initiation of product development

integration and testing

5
b-8 Software unit
design and
implementabion

B9 Software unit
testing

© Addalot Consulting AB - All rights reserved 14

addalot

QUALITY IMPROVEMENT

7: Software architectural design \
\[= =1/ /

Objectives Architecture
1. Develop a software architectural design _
that realizes the software safety requirements o0
Component
2. Verify the software architectural design »
&
General Unit

The software architectural design represents all software components and their
interactions in a hierarchical structure. Static aspects, such as interfaces and data
paths between all software components, as well as dynamic aspects, such as process
sequences and timing behaviour are described.

- NOTE The software architectural design is not necessarily limited to one microcontroller or ECU,

and is related to the technical safety concept and system design. The software architecture for
each microcontroller is also addressed by this chapter.

= |n order to develop a software architectural design both software safety requirements
as well as all non-safety-related requirements are implemented.

= The software architectural design provides the means to implement the software
safety requirements and to manage the complexity of the software development.

addaloi

QUALITY IMPROVEMENT

© Addalot Consulting AB - All rights reserved 15

/. Prerequisites

safety plan (refined) in accordance with 5.5.1;

design and coding guidelines for modelling and programming languages in
accordance with 5.5.3;

hardware-software interface specification in accordance with ISO 26262-4:2011,
7.5.3;

software safety requirements specification in accordance with 6.5.1;
software verification plan (refined) in accordance with 6.5.3; and

software verification report in accordance with 6.5.4.

Support information

technical safety concept (see ISO 26262-4:2011, 7.5.1);

system design specification (see ISO 26262-4:2011, 7.5.2);

qualified software components available (see ISO 26262-8:2011, Clause 12);
tool application guidelines in accordance with 5.5.4; and

guidelines for the application of methods (from external source).

addaloi

© Addalot Consulting AB - All rights reserved 16 QUALITY IMPROVEMENT

Requirements and recommendations

7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7
7.4.8
7.4.9
7.4.10

Use of appropriate notation
Design considerations

Design principles

Identification of software units
Design aspects

Component categorization
New/modified components
Re-used components

Allocation of Safety requirements

ASIL of combined components

© Addalot Consulting AB - All rights reserved

17

7.4.11

7.4.12

Software partitioning
(Annex D)

Dependent failure analysis

(Part 9: 7 Dependent failure analysis)

7.4.13

7.4.14
7.4.15
7.4.16
7.4.17
7.4.18

Safety analysis
(Part 9: 8 Safety analysis)

Error detection
Error handling
New hazards
Resource usage

Architectural design verification

addaloi

QUALITY IMPROVEMENT

7.4.1 Notation and 7.4.2 Consideration

7.4.1 Notations for software architectural design

--E--E-

la Informal
1b Semi-formal (also executable models) + ++ ++ o+
1c Formal + + + +

Informal: Power-point drawings

Semi-formal: UML, SDL or UML-RT, An overview of architecture design notations

7.4.2 Design considerations: During the development of the software architectural
design the following shall be considered:

a. the verifiability of the software architectural design;
NOTE This implies bi-directional traceability between the software architectural design and the software
safety requirements. (only safety requirements)

the suitability for configurable software;
the feasibility for the design and implementation of the software units;
the testability of the software architecture during software integration testing; and

the maintainability of the software architectural design.
addaloc

© Addalot Consulting AB - All rights reserved 18 QUALITY IMPROVEMENT

™ o 0N o

http://www.site.uottawa.ca/~tcl/gradtheses/jlevin/ModelingInSWArchitecture-UOttawa-SITE-TR-2009-02.pdf

7.4.3 Design principles

7.4.3 Principles of software architecture design In order to avoid failures resulting

from high complexity, the software architectural design shall exhibit the following

properties by use of the principles listed in Table below:

a. modularity;
b. encapsulation, and

c. simplicity.

--E--E-

Hierarchical structure of software components
1b Restricted size of software components

1c Restricted size of interfaces

1d High cohesion within each software component
le Restricted coupling between software components

1f Appropriate scheduling properties

1g Restricted use of interrupts (must have priority)

© Addalot Consulting AB - All rights reserved

19

e

+

S+

e

e

++

e

e

o

o+

o

e

e

++

e

/

addaloi

QUALITY IMPROVEMENT

7.4.4 Level and 7.4.5 Description

7.4.4 The software architectural design shall be developed down to the level where all
software units are identified.

7.4.5 The software architectural design shall describe:

a. the static design aspects of the software components; i.e.
- the software structure including its hierarchical levels;
- the logical sequence of data processing;
- the data types and their characteristics;
- the external interfaces of the software components;
- the external interfaces of the software; and
- the constraints including the scope of the architecture and external dependencies.

b. the dynamic design aspects of the software components, i.e.

- the functionality and behaviour; (Note 2: including operating states e.g. power-up, shut-down,
normal operation, calibration and diagnosis)

- the control flow and concurrency of processes; (Note 3: including allocation to HW)
- the data flow between the software components;

- the data flow at external interfaces; and

- the temporal constraints.

addaloi

© Addalot Consulting AB - All rights reserved 20 QUALITY IMPROVEMENT

/.4.6-7.4.8 Reuse categorization

7.4.6 Every safety-related software component shall be categorized as one of the
following:

a. newly developed;
b. reused with modifications; or
c. reused without modifications.

7.4.7 Safety-related software components that are newly developed or reused with
modifications shall be developed in accordance with ISO 26262.

7.4.8 Safety-related software components that are reused without modifications shall be
qualified in accordance with ISO 26262-8:2011, Clause 12.

addaloi

© Addalot Consulting AB - All rights reserved 21 QUALITY IMPROVEMENT

7.4.9 Req allocation and ASIL

7.4.9 The software safety requirements shall be allocated to the software components.
As a result, each software component shall be developed in compliance with the
highest ASIL of any of the requirements allocated to it.
- NOTE Following this allocation, further refinement of the software safety requirements can be
necessary.

Software components = one or more Software Units, thus we need to allocate
safety regs close to software units

addaloi

© Addalot Consulting AB - All rights reserved 22 QUALITY IMPROVEMENT

7.4.10 Highest ASIL or no interference

7.4.10 If the embedded software has to implement software components of different
ASILs, or safety-related and non-safety-related software components, then all of the
embedded software shall be treated in accordance with the highest ASIL, unless the
software components meet the criteria for coexistence in accordance with I1ISO 26262-

9:2011, Clause 6.
Freedom of interference general in ISO 26262-9:2011, Clause 6.

= This means that cascading failures from this sub-element to the safety-related
elements are absent.

= This can be achieved by design precautions such as those concerning the data flow
and control flow for software, or the I/O signals and control lines for hardware.

Software specific in Annex D (See separate slides)

addaloi

© Addalot Consulting AB - All rights reserved 23 QUALITY IMPROVEMENT

7.4.11 Software Partitioning =

7.4.11 If software partitioning (see Annex D) is used to implement freedom from
interference between software components it shall be ensured that:

a) the shared resources are used in such a way that freedom from interference of
software partitions is ensured;

- NOTE 1 Tasks within a software partition are not free from interference among each other.

- NOTE 2 One software partition cannot change the code or data of another software partition nor command
non-shared resources of other software partitions.

- NOTE 3 The service received from shared resources by one software partition cannot be affected by another
software partition. This includes the performance of the resources concerned, as well as the rate, latency,
jitter and duration of scheduled access to the resource.

b) the software partitioning is supported by dedicated hardware features or
equivalent means (this requirement applies to ASIL D, in accordance with 4.3);

c) the part of the software that implements the software partitioning is developed in
compliance with the same or an ASIL higher than the highest ASIL assigned to the
requirements of the software partitions; and
- NOTE In general the operating system provides or supports software partitioning.

d) the verification of the software partitioning during software integration and testing
(in accordance with Clause 10) is performed.

addaloi

© Addalot Consulting AB - All rights reserved 24 QUALITY IMPROVEMENT

7.4.12 Dependent failures

o paes
g) .
kY o7 otma |} Sobuareiing
> ™ \
\ s
N /
\ e/

7.4.12 An analysis of dependent failures in accordance with ISO 26262-9:2011, Clause
7, shall be carried out if the implementation of software safety requirements relies on
freedom from interference or sufficient independence between software components.

Part 9: Clause 7: Analysis of dependent failures

Objective: The analysis of dependent failures aims to identify the single events or single
causes that could bypass or invalidate a required independence or freedom from
interference between given elements and violate a safety requirement or a safety goal.

Architectural features to consider:

similar and dissimilar redundant elements;

different functions implemented with identical software or hardware elements;
functions and their respective safety mechanisms;

partitions of functions or software elements;

physical distance between hardware elements, with or without barrier;
common external resources.

= Independence is threatened by common cause failures and cascading failures,
while freedom from interference is only threatened by cascading failures.

(Detour)

addaloi

© Addalot Consulting AB - All rights reserved 25 QUALITY IMPROVEMENT

7.4.13 Safety analysis |

N\ [B -
7.4.13 Safety analysis shall be carried out at the software architectural level in
accordance with I1ISO 26262-9:2011, Clause 8, in order to: (next)
= jdentify or confirm the safety-related parts of the software; and
= support the specification and verify the efficiency of the safety mechanisms.

NOTE Safety mechanisms can be specified to cover both issues associated with random
hardware failures as well as software faults.

addaloi

© Addalot Consulting AB - All rights reserved 26 QUALITY IMPROVEMENT

7.4.14 Error detection =V

7.4.14 To specify the necessary software safety mechanisms at the software
architectural level, based on the results of the safety analysis in accordance with 7.4.13,
mechanisms for error detection as listed in Table 4 shall be applied.

- NOTE When not directly required by technical safety requirements allocated to software, the use
of software safety mechanisms is reviewed at the system level to analyse the potential impact on
the system behaviour.

- Mechanisms for error detection -E-m

Range checks of input and output data

1b Plausibility check (reference model, comparing + + + ++
sources)

1c Detection of data errors (EDC, multiple storage) + + + +

1d External monitoring facility (watchdog) 0 + + ++

le Control flow monitoring 0 + ++ ++

1f Diverse software design 0 0 + ++

addaloi

© Addalot Consulting AB - All rights reserved 27 QUALITY IMPROVEMENT

7.4.15 Error handling

7.4.15 This subclause applies to ASIL (A), (B), C and D, in accordance with 4.3 ((X) =
recommendation): to specify the necessary software safety mechanisms at the software
architectural level, based on the results of the safety analysis in accordance with 7.4.13,
mechanisms for error handling as listed in Table 5 shall be applied.

- NOTE 1 When not directly required by technical safety requirements allocated to software, the
use of software safety mechanisms is reviewed at the system level to analyse the potential
impact on the system behaviour.

- NOTE 2 The analysis at software architectural level of possible hazards due to hardware is described in ISO
26262-5.

--E.-[ﬂ

Static recovery mechanism (forward and backward, +
blocks, repetition = reset HW and re-execute SW)

1b Graceful degradation (prioritizing functions) + - - ++
1c Independent parallel redundancy o) 0 + ++
1d Correcting codes for data + - + +

addaloi

© Addalot Consulting AB - All rights reserved 28 QUALITY IMPROVEMENT

http://mavendeveloper.com/2011/01/3005478/
http://www.cs.ncl.ac.uk/publications/books/papers/101.pdf
https://upcommons.upc.edu/bitstream/handle/2117/87259/Timely Error Detection for Effective Recovery.pdf

7.4.16 New hazards

7.4.16 If new hazards introduced by the software architectural design are not already
covered by an existing safety goal, they shall be introduced and evaluated in the hazard
analysis and risk assessment in accordance with the change management process in

ISO 26262-8:2011, Clause 8.

- NOTE Newly identified hazards, not already reflected in a safety goal, are usually non-functional
hazards. If those non-functional hazards are outside the scope of this standard then it is
recommended that they be annotated in the hazard analysis and risk assessment with the
following statement “No ASIL is assigned to this hazard as it is not within the scope of ISO
26262.” However, an ASIL is allowed for reference purposes.

addaloi

© Addalot Consulting AB - All rights reserved 29 QUALITY IMPROVEMENT

/.4.17 Resource usage

7.4.17 An upper estimation of required resources for the embedded software shall be
made, including:

a) the execution time;

b) the storage space; and
EXAMPLE RAM for stacks and heaps, ROM for program and non-volatile data.

c) the communication resources.

addaloi

© Addalot Consulting AB - All rights reserved 30 QUALITY IMPROVEMENT

7.4.18 Verification

7.4.18 The software architectural design shall be verified in accordance with ISO
26262-8:2011, Clause 9, and by using the software architectural design verification
methods listed in Table 6 to demonstrate the following properties:

= compliance with the software safety requirements;

= compatibility with the target hardware; and
- NOTE This includes the resources as specified in 7.4.17.

= adherence to design guidelines.

- Methods for SW architecture design verification
Walk-through of the design

1b Inspection of the design + ++ ++ e

1c Simulation of dynamic parts of the design + - + ++

1d Prototype generation 0 0 i ++

le Formal verification 0 o) + +

1f Control flow analysis + - e ++

1g Data flow analysis + - ++ ++
dUuddiUc

© Addalot Consulting AB - All rights reserved 31 QUALITY IMPROVEMENT

/7. Work products

= 7.5.1 Software architectural design specification
resulting from requirements 7.4.1 to 7.4.6, 7.4.9,
7.4.10, 7.4.14, 7.4.15 and 7.4.17.

ASPICE Output work products

7.5.2 Safety plan (refined) resulting from

. 04-04 Software architectural design
requirement 7.4.7.

04-04 Software architectural design

7.5.3 Software safety requirements specification

(refined) resulting from requirement 7.4.9. 04-04 Software architectural design
17-08 Interface requirement specification
= 7.5.4 Safety analysis report resulting from 04-04 Software architectural design
reqwrement 7.4.13. 04-04 Software architectural design
. . 13-19 Review record
= 7.5.5 Dependent failures analysis report 13-22 Traceability record

resulting from requirement 7.4.12. 13-04 Communication record

7.5.6 Software verification report (refined)
resulting from requirement 7.4.18.

addaloi

© Addalot Consulting AB - All rights reserved 32 QUALITY IMPROVEMENT

Comparison

SWE.2.BP1:

Develop software architectural design

- (own and supplied code — Arch doc)

- (data consistency mechanisms — Arch doc)

SWE.2.BP2: Allocate software requirements

- (dependency analysis — Arch doc)

SWE.2.BP3:
SWE.2.BP4:

SWE.2.BPS:
SWE.2.BP6:
SWE.2.BP7:

SWE.2.BP8:

SWE.2.BP9:

Define interfaces of software elements

Describe dynamic behavior

Define resource consumption objectives
Evaluate alternative software architectures

Establish bidirectional traceability

Ensure consistency

Communicate agreed software architectural design

© Addalot Consulting AB - All rights reserved

33

7.4.1 Notations for software architectural design
7.4.3 Principles of software architecture design
7.4.4 Required level

7.4.5 Description (a: static)

7.4.6-7.4.8 ASIL categorize of components (re-used)
7.4.14 and 7.4.15 Software safety mechanisms
7.4.16 Analyze new hazards

7.4.9 Allocate software safety requirements

7.4.10 ASIL analysis of components

7.4.11 Software partitioning
7.4.12 Dependent failure analysis

7.4.5 Description (a: Interfaces)

7.4.5 Description (b: dynamic)

7.4.17 Resource limits
- (7.4.2 Design considerations)

7.4.2 Design considerations (a)
7.4.9 Allocate software safety requirements

7.4.18 Verify compliance, 7.4.2 Design considerations

7.4.13 Safety analysis

CLICACACIINS L

QUALITY IMPROVEMENT

“Excellent firms don't believe in excellence -
only in constant improvement and change.”

In Search of Excellence - Tom Peters

Even-Andre.Karlsson@addalot.se
+46 706 800 533

addaloi

QUALITY IMPROVEMENT

